Traffic Impact Analysis
Prepared for City of Largo

West Bay Largo
 Mixed-Use Development

City of Largo, Florida

Prepared by:

Kimley-Horn and Associates, Inc.
Tampa, Florida

Kimley»Horn

West Bay Largo
 Mixed-Use Development

City of Largo, Florida

Prepared by:

Kimley-Horn and Associates, Inc.
Tampa, Florida

©Kimley-Horn and Associates, Inc.
 May 2023

The entirety of this document, including text and images, is property of Kimley-Horn and Associates, Inc., protected under U. S. copyright law. Copyright © 2023 Kimley-Horn and Associates, Inc.

Christopher Hatton
FL PE Number: 48905
201 N. Franklin St., Suite 1400
Tampa, Florida 33602

Kimley»Horn

TABLE OF CONTENTS

INTRODUCTION 1
PROJECT SITE INFORMATION 4
Project Access 4
Trip Generation 4
Trip Distribution and Assignment 6
SCHEDULED IMPROVEMENTS 9
STUDY AREA DETERMINATION 10
EXISTING TRAFFIC VOLUMES 11
FUTURE TRAFFIC CONDITIONS 13
ROADWAY CAPACITY ANALYSIS 16
INTERSECTION ANALYSIS 19
TURN LANE ANALYSIS 21
MULTIMODAL ANALYSIS 23
TRANSPORTATION MANAGEMENT STRATEGIES 24
CONCLUSION 25
APPENDIX A: 26
APPENDIX B: 27
APPENDIX C: 28
APPENDIX D: 29
APPENDIX E: 30
APPENDIX F: 31
APPENDIX G: 32

Kimley»Horn

LIST OF FIGURES

Page
Figure 1: Project Location Map 2
Figure 2: Project Traffic Distribution 7
Figure 3: P.M. Peak-Hour Project Traffic 8
Figure 4: Existing P.M. Peak-Hour Peak-Season Traffic 12
Figure 5: P.M. Peak-Hour Background Traffic 14
Figure 6: P.M. Peak-Hour Total Traffic Volumes 15
LIST OF TABLES
Page
Table 1: P.M. Peak-Hour Project Trip Generation 5
Table 2: Roadway Analysis (P.M. Peak-Hour) 18
Table 3: Intersection Analysis (P.M. Peak-Hour) 20

LIST OF APPENDICES

Appendix A:	Site Plan and Approved Methodology
Appendix B:	Internal Capture Calculations, and (FSUTMS) Model Output for District 7
Appendix C:	2021 Turning Movement Counts, Largo City Hall Project Volumes, and Growth
	Rate Calculations

INTRODUCTION

This Traffic Impact Analysis (TIA) is provided for the proposed West Bay Largo Mixed-Use development that is located in the northwest (Building A) and northeast (Building B) quadrants of the intersection of West Bay Drive \& 6th Street Northwest in the City of Largo in Pinellas County, Florida. This mixed-use development project site is approximately 2.57 acres and has an anticipated buildout year of 2026. The proposed mixed-use development will consist of up to 276 multi-family housing units (low-rise) and up to 27,300 square feet of retail use. A description of the proposed land uses and the results of the TIA are provided below.

The site is within the West Bay Drive Community Redevelopment District. Therefore, the West Bay Drive Community Redevelopment District Plan was reviewed as part of the transportation analysis of the site. The project location map is illustrated in Figure 1.

The Pinellas County MPO approved the Pinellas County Mobility Plan Report in 2013. The intent of the Mobility Plan was to replace local transportation concurrency management programs with a system that provides local governments with the means to manage the traffic impacts of development projects without requiring projects to meet adopted level of service standards. This analysis is provided based upon the requirements in Section 7.2.4 of the City's Development Code for West Bay Drive Community Redevelopment District (WBD-CRD). The requirements include a traffic study and transportation management plan identifying improvements necessary to mitigate the impacts of the project.

As illustrated in Figure 1, access to the site is proposed to be provided through the following existing access connections:

- Driveway 1: Full-access connection along 1st Avenue Northwest (Building A)
- Driveway 2: Full-access connection along 6th Street Northwest (Building A)
- Driveway 3: Full-access connection along 6th Street Northwest (Building B)

Prior to undertaking this analysis, a formal Traffic Impact Analysis methodology letter was prepared by Kimley-Horn and submitted to the City of Largo on February 6, 2023. Additionally, a meeting to discuss the methodology was held with City of Largo staff on March 29, 2023. The methodology letter is attached in Appendix A. In general, the following procedural steps were undertaken in this Traffic Impact Analysis:

- Traffic volumes anticipated to be generated by the proposed mixed-use development were estimated using the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11 ${ }^{\text {th }}$ Edition;
- Project traffic was initially distributed and assigned to the public roadway network based upon the results of a Florida Standard Urban Transportation Model Structure (FSUTMS) District Seven Regional Planning Model (D7RPM) analysis. Additionally, existing traffic counts were collected in the area and used to further refine the distribution;
- The study area was agreed upon with City of Largo and was based upon the 2022 Annual Level of Service Report for Forward Pinellas and consists mainly of the adjacent roadway segments. Additionally, per Forward Pinellas MPO Traffic Impact Study Methodology, study area roadway segments are those with the project traffic representing one percent (1.0\%) or greater of the available roadway capacity up to a maximum radius of two miles from the project site.
- Existing p.m. peak-hour traffic volumes in the study area were collected and adjusted to reflect the peak season volumes using the Florida Department of Transportation's peak season conversion factor (PSCF), and were used as part of future background volumes;
- Work Programs of the City of Largo, Pinellas County and the FDOT were reviewed to identify scheduled roadway improvements in the area;
- Background (non-project) traffic volumes consist of existing traffic grown by an annual growth rate of one percent (1.0\%) and vested/reserved trips associated with previously approved developments in the area (Largo City Hall); and
- Intersection and roadway segment operational analyses within the study area for existing, future background, and future total scenarios were completed using the Synchro version 11 software package and the Pinellas County 2022 Annual Level of Service Report (2021 data).

PROJECT SITE INFORMATION

Project traffic used in this analysis is defined as the vehicle trips expected to be generated by the development. These trips were distributed and assigned throughout the study roadway network.

Project Access

The proposed project access includes the following connections:

- Driveway 1: Full-access connection along 1st Avenue Northwest (Building A)
- Driveway 2: Full-access connection along 6th Street Northwest (Building A)
- Driveway 3: Full-access connection along 6th Street Northwest (Building B)

Trip Generation

The trip generation potential of the proposed mixed-use development was estimated for the p.m. peak-hour using the equations from the Institute of Transportation Engineers' (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition, for land use code (LUC) 220 (Multifamily Housing (Low rise)) and LUC 822 (Strip Retail Plaza (<40k)).

Currently the project site is undeveloped, although at total buildout will include up to 276 multifamily dwelling units and up to 27,300 square feet of retail use.

The estimated net, new trips expected to be generated by the proposed mixed-use development are 212 p.m. peak-hour trips (124 entering, 88 exiting), as shown in Table 1. Pass-by and internal capture trips were assumed in the analysis based upon the Trip Generation Handbook, $3^{\text {rd }}$ Edition. Internal capture calculations are attached in Appendix B.

Table 1: P.M. Peak-Hour Project Trip Generation

ITE TRIP GENERATION CHARACTERISTICS					\qquad		GROSS TRIPS			INTERNAL CAPTURE		TOTALEXTERNALTRIPS			PASS-BY CAPTURE		NET NEWEXTERNALTRIPS		
Land Use	ITE	ITE	Scale	ITE			In	Out	Total	Percent	IC	In	Out	Total	Percent	PB	In	Out	Total
					In	Out				Percent					Percent				
Multifamily Housing LowRise	11	220	276	DU	63\%	37\%	88	51	139	20.9\%	29	67	43	110	0\%	0	67	43	110
Strip Retail Plaza (<40k)	11	822	27.3	KSF	50\%	50\%	79	79	158	18.4\%	29	71	58	129	17.1\% ${ }^{1}$	27^{1}	57	45	102
Total:							167	130	297	-	58	138	101	239	-	27	124	88	212

Notes:

1. Pass-By trips assumed for this site do not exceed 10% of the adjacent street traffic (27 Pass-By trips divided by 297 gross trips $=9.1 \%$ of adjacent street traffic).

Trip Distribution and Assignment

The trip distribution for the proposed mixed-use development was initially determined using the Florida Standard Urban Transportation Model Structure (FSUTMS) for District 7 (version 9.1) and is shown in Appendix B. Existing volume counts at the study intersections were undertaken along West Bay Drive to further refine this distribution.

There are currently road closures along West Bay drive on $4^{\text {th }}$ Street NW, $5^{\text {th }}$ Street NW, $6^{\text {th }}$ Street NW, and Ridge Road N due to the construction of the City Hall. The City Hall is located east of the project site on the adjacent parcel. Due to this, turning movement counts that were previously completed at these study area intersections for the Largo City Hall TIA in 2021 were utilized.

A growth rate, determined by using FDOT's historical Annual Average Daily Traffic (AADT) information for three nearby roadway segments of State Road 686/East Bay Drive (East of US Alt 19), US Alt 19 (South of 4th Avenue Northwest), and Clearwater-Largo Road (North of West Bay Drive), was initially calculated as -2.49%. However, a one percent (1\%) growth rate was used in order to provide a more conservative analysis. The 1% growth rate was utilized for two years to get current counts (2023) since the traffic counts utilized are from 2021. 2021 traffic counts and growth rate calculations are attached in Appendix C.

Approximately 25% of the vehicles entering and exiting the site are anticipated to utilize West Bay Drive to the west while approximately 60% of the vehicles entering and exiting the site are anticipated to utilize West Bay Drive to the east and additionally, approximately 15% of the vehicles entering and exiting the site are anticipated to utilize Clearwater-Largo Road to the north.

The resulting percentages were applied to the trip generation estimates shown in Table 1 to estimate project trips within the vicinity of the project site. The distribution of net new project traffic, in terms of trip percentages, is shown in Figure 2.

The p.m. peak-hour project traffic is shown in Figure 3.

SCHEDULED IMPROVEMENTS

A review of the Five-Year Work Program for the City of Largo, Pinellas County, and FDOT District Seven shows roadway capacity projects in the study area which are scheduled to be funded within five years. Complete Street improvements, including mid-block pedestrian crossings, have been constructed along West Bay Drive.

Additionally, there is a project in the City of Largo Capital Improvements Program (CIP) for $4^{\text {th }}$ Street NW. The project goal was to develop a multimodal street to provide increased transportation capacity through multimodal improvements. The West Bay mixed-use project will be coordinated with the City Hall project and is anticipated to upgrade substandard sidewalk sections and construct a multi-use path along the corridor from $8^{\text {th }}$ Avenue NW to Rosery Road.

A project is also identified for Clearwater-Largo Road to retrofit the roadway between Clearwater-Largo Road from West Bay Drive to $4^{\text {th }}$ Avenue SW with median islands, streetscaping, and pedestrian crossing improvements.

Based on a previously approved traffic study (Largo City Hall, October 2021), a geometric improvement at the intersection of West Bay Drive $\& 4^{\text {th }}$ Street NW was included in the traffic analysis. The geometric improvement, approved by the City of Largo, includes an exclusive 225foot southbound left-turn lane to help decrease the queue along $4^{\text {th }}$ Street NW. The addition of the southbound-left turn lane is anticipated to be completed by late 2024. Therefore, this improvement was assumed for future conditions and will be detailed later in this report.

STUDY AREA DETERMINATION

The study area was agreed upon with City of Largo staff and was based upon the 2022 Annual Level of Service Report for Forward Pinellas and consists mainly of the adjacent roadway segments. The study area intersections included were discussed with City of Largo staff during the methodology phase. Additionally, per Forward Pinellas MPO Traffic Impact Study Methodology, study area roadway segments are those with the project traffic representing 1.0\% or greater of the available roadway capacity up to a maximum radius of two miles from the project site. However, the study area roadway segments were chosen based on the discussions made during the methodology phase.

The study area roadway segments were determined to be the following:

- $1^{\text {st }}$ Avenue Northwest from $4^{\text {th }}$ Street Northwest to Clearwater-Largo Road
- East Bay Drive from $4^{\text {th }}$ Street Northwest to Missouri Avenue
- West Bay Drive from $4^{\text {th }}$ Street Northeast to $6^{\text {th }}$ Street Northwest
- $4^{\text {th }}$ Street Northwest from $1^{\text {st }}$ Avenue Northwest to West Bay Drive
- $5^{\text {th }}$ Street Northwest from $1^{\text {st }}$ Avenue Northwest to West Bay Drive
- $6^{\text {th }}$ Street Northwest from $1^{\text {st }}$ Avenue Northwest to West Bay Drive
- Clearwater-Largo Road from Belleair Road to Ulmerton Road

Additionally, the study intersections were determined to be the following:

- West Bay Drive \& Missouri Avenue
- West Bay Drive \& $4^{\text {th }}$ Street Northwest
- West Bay Drive \& Clearwater-Largo Road

The 2022 Annual Level of Service Report for Forward Pinellas is attached in Appendix D.

EXISTING TRAFFIC VOLUMES

Existing traffic conditions were evaluated within the study network for the p.m. peak-hour. A determination of the impact of the existing traffic on the roadway network was made, including operating conditions for the intersections and roadway segments within the study area. The procedures used in this analysis are discussed below.

West Bay Drive is currently a 4-lane undivided roadway that runs east-west adjacent to the site with a posted speed limit of 35 miles per hour. Vehicle turning movement volume counts were conducted on West Bay Drive during the p.m. peak period (4:00 p.m. to 6:00 p.m.) on April 11, 2023 to quantify existing peak-hour conditions within the study area. The vehicle turning movement volume counts were conducted on the following intersections:

- West Bay Drive \& Missouri Avenue
- West Bay Drive \& Clearwater-Largo Road

However, due to the construction of the Largo City Hall project, temporary road closures on $4^{\text {th }}$ Street NW, $5^{\text {th }}$ Street NW, $6^{\text {th }}$ Street NW, and Ridge Road NW were in effect. Therefore, traffic counts along those road segments are not usable. Therefore, vehicle turning movements volume counts conducted on West Bay Drive during the p.m. peak period (4:00 p.m. to 6:00 p.m.) on August 18, 2021 were grown by an annual growth rate of 1.0% for two years to determine the 2023 existing counts. The vehicle turning movement volume counts were conducted on the following intersections:

- West Bay Drive \& $4^{\text {th }}$ Street Northwest
- West Bay Drive \& $5^{\text {th }}$ Street Northwest

The vehicle counts at the study intersections were adjusted to reflect peak-season conditions. This modification was performed using the (FDOT) peak-season conversion factor (PSCF), which corresponds to the data collection date for Pinellas County. The PSCF and the respective 2021 and 2023 turning movement counts at the study intersections are provided in Appendix E and the existing seasonally adjusted traffic volumes are provided in Figure 4.

In addition, Pursuant to the Community Planning Act of 2011, existing deficiencies (such as the section of East Bay Drive from 4th Street NE to Missouri Avenue) are not the responsibility of the developer. This will be further explained later in the report.

FUTURE TRAFFIC CONDITIONS

Future traffic volumes consist of two components: project traffic and future background traffic (non-project) traffic estimates. Future background traffic is defined as expected non-project traffic on the roadway network in the future year at buildout of the proposed project. For the purposes of this analysis, it was determined that 2026 would be the buildout year of the development. Therefore, 2026 conditions were evaluated as the "future" year scenario.

As previously identified earlier in the report, a growth rate, determined by using FDOT historical Annual Average Daily Traffic (AADT) information for three nearby roadway segments of State Road 686/East Bay Drive (East of US Alt 19), US Alt 19 (South of 4th Avenue Northwest), and Clearwater-Largo Road (North of West Bay Drive), was initially calculated as -2.49%. However, a 1% growth rate was used in order to provide a conservative analysis.

Traffic volumes associated with vested developments in the area (Largo City Hall) were considered in the development of background traffic estimates. Existing traffic volumes were added to the trips associated with vested developments to develop future background volumes for the p.m. peak-hour.

The p.m. peak-hour background (2026) volumes are identified in Figure 5. The net, new project traffic volumes identified in Figure $\mathbf{3}$ were then added to the background volumes to develop p.m. peak-hour total (2026) volumes identified in Figure 6. The growth rate calculations are attached in Appendix C.

ROADWAY CAPACITY ANALYSIS

A roadway capacity analysis was conducted for the study area roadway segments based upon the service volumes included in the 2022 Forward Pinellas MPO Level of Service Report. The previously identified study area roadway segments were evaluated for existing, future background, and future total volumes during the p.m. peak-hour. The following roadway segments were analyzed:

- $1^{\text {st }}$ Avenue Northwest from $4^{\text {th }}$ Street Northwest to Clearwater-Largo Road
- East Bay Drive from $4^{\text {th }}$ Street Northeast to Missouri Avenue
- West Bay Drive from $4^{\text {th }}$ Street Northwest to $6^{\text {th }}$ Street Northwest
- $4^{\text {th }}$ Street Northwest from $1^{\text {st }}$ Avenue Northwest to West Bay Drive
- $5^{\text {th }}$ Street Northwest from $1^{\text {st }}$ Avenue Northwest to West Bay Drive
- $6^{\text {th }}$ Street Northwest from $1^{\text {st }}$ Avenue Northwest to West Bay Drive
- Clearwater-Largo Road from Belleair Road to Ulmerton Road

Roadway volumes exiting one study area intersection may not be equivalent to the entering intersection turning movement volumes at the next intersection due to driveway locations between study intersections or minor fluctuations in travel patterns between time periods. To evaluate the study roadway segments based upon typical roadway conditions, volumes for the study roadway segments were determined as the average of entering and exiting vehicles from adjacent street intersections during the p.m. peak-hour.

The LOS D service volumes included in the Pinellas County: 2022 Annual Level of Service Report were utilized in the analysis. Service volumes for roadways that were not included in the Pinellas County: 2022 Annual Level of Service Report, were found in FDOT's Generalized Peak Hour TwoWay Volume Tables.

Some of the study roadway segments are under construction due to the Largo City Hall project, and some of the study roadway segments are temporary closed. Therefore, traffic counts from 2021 were utilized for the roadway segments that were affected by the road closures. The peakhour roadway volumes were grown by a one percent (1.0\%) growth rate for two (2) years to determine existing (2023) volumes. However, the roadways that were not affected by the road closures, utilized traffic counts from 2023.

Additionally, vested trips from the approved Largo City Hall project were added to volumes. However, certain roadways did not include any vested trips, therefore, a 1% growth rate was applied to get the future background (year 2026) volumes. The vested traffic volumes are shown in Appendix C. Total roadway volumes for the roadway analysis were calculated by adding project traffic to the future 2026 background roadway volumes.

As indicated in Table 2, an analysis was provided for existing (year 2023), future background (year 2026 without project), and future total (year 2026 with project) traffic during the p.m. peak-hour.

The roadway analysis shows that all study roadway segments are anticipated to have sufficient capacity at buildout of the proposed development based upon the peak-hour directional capacity volume found in the Pinellas County: 2022 Annual Level of Service Report, except for the study roadway segment of East Bay Drive from $4^{\text {th }}$ Street NE to Missouri Avenue. Pursuant to the Community Planning Act of 2011, existing deficiencies (such as the section of East Bay Drive from 4th Street NE to Missouri Avenue) are not the responsibility of the developer.

Supporting documentation for the study area roadway analysis is provided in Appendix D, including the Pinellas County: 2022 Annual Level of Service Report and FDOT's Generalized LOS Volume Tables.

Kimley»Horn

Table 2: Roadway Analysis (P.M. Peak-Hour)

ROADWAY	FROM	то	SERVICE VOLUMES		DIRECTIONAL EXISTING (2021) Volumes ${ }^{3}$	$\begin{aligned} & \text { DIRECTIONAL } \\ & \text { EXISTING } \\ & \text { (2023) } \\ & \text { volumes } \end{aligned}$	DIRECTIONAL BACKGROUND (2026) Volumes ${ }^{6}$	PROJECT TRAFFIC			DIRECTIONAL FUTURE TOTAL (2026) Volume	$\begin{gathered} \text { v/c } \\ \text { RATIO } \end{gathered}$	EXCEED SERVICE VOLUME?
			EXISTING LANEAGE	LOS D SERVICE VOLUME									
				PEAK-HOUR DIRECTIONAL VOLUME				DIRECTION	PROJECT TRAFFIC ASSIGNMENT	PROJECT TRAFFIC VOLUME			
1st Avenue NW	4th St NW	Clearwater-Largo Rd	2	718^{2}	36	37^{5}	165	Eastbound	60\%	74	239	0.33	No
					21	21^{5}	95	Westbound	5\%	6	101	0.14	No
East Bay Drive	4th St NE	Missouri Ave	4	1,683 ${ }^{1}$	--	1,689 ${ }^{4}$	1,740*	Eastbound	41\%	51	1,791	1.06	Yes ${ }^{7}$
					--	1,673 ${ }^{4}$	1,724*	Westbound	41\%	51	1,791	1.06	Yes ${ }^{7}$
West Bay Drive	Missouri Ave	6th St NW	4	1,683 ${ }^{1}$	--	1,284 ${ }^{4}$	1,370	Eastbound	60\%	74	1,444	0.86	No
					--	1,430 ${ }^{4}$	1,488	Westbound	60\%	74	1,444	0.86	No
	6th St NW	$\begin{gathered} \text { Clearwater-Largo } \\ R d \end{gathered}$	4	1,683 ${ }^{1}$	--	$1,232^{4}$	1,269*	Eastbound	25\%	31	1,300	0.77	No
					--	1,270 ${ }^{4}$	1,308*	Westbound	25\%	31	1,300	0.77	No
	Clearwater-Largo Rd	Indian Rocks Rd	4	1,683 ${ }^{1}$	--	1,261 ${ }^{4}$	1,299*	Eastbound	10\%	12	1,311	0.78	No
					--	1,222 ${ }^{4}$	1,259*	Westbound	10\%	12	1,311	0.78	No
4th Street NW	1st Ave NW	West Bay Dr	2	718^{2}	28	29^{5}	102	Northbound	5\%	6	108	0.15	No
					72	73^{5}	199	Southbound	60\%	74	273	0.38	No
5th Street NW	1st Ave NW	West Bay Dr	2	718^{2}	5	5^{5}	26	Northbound	5\%	6	32	0.04	No
6th Street NW	Woodrow Ave	1st Ave NW	2	718^{2}	20	20^{5}	21*	Northbound	0\%	0	21	0.03	No
					20	20^{5}	21*	Southbound	10\%	12	33	0.05	No
	1st Ave NW	West Bay Dr	2	718^{2}	50	51^{5}	53*	Northbound	75\%	93	146	0.20	No
					50	51^{5}	53*	Southbound	25\%	31	84	0.12	No
Clearwater-Largo Rd	Belleair Rd	West Bay Dr	4	1,683 ${ }^{1}$	--	$768{ }^{4}$	791*	Northbound	13\%	16	807	0.48	No
					--	$995{ }^{4}$	1,025*	Southbound	13\%	16	807	0.48	No
	West Bay Dr	Ulmerton Rd	6	2,646 ${ }^{1}$	--	7214	743*	Northbound	15\%	19	762	0.29	No
					--	1,025 ${ }^{4}$	1,056*	Southbound	15\%	19	762	0.29	No

Notes:

1. Based on 2022 Forward Pinellas LOS Report (2021 data) (East Bay Drive utilized Directional volumes from the roadway of West Bay Drive from Missouri Avenue to Clearwater-Largo Road since the roadways are adjacent to one another)
2. Based on Table 4 of FDOT's Generalized Level of Service Volume Tables (1,330*0.6*0.9) $=718$
3. Based on p.m. peak-hour peak-season turning movement counts collected in 2021, due to temporary road closures occurring in 2023
4. Based on p.m. peak-hour peak-season turning movement counts collected in 2023
5. Based on a 1% growth rate for two years
6. Added vested trips from the approved Largo City Hall project, however, roadways without vested trips (*) will utilize a 1% growth rate for three years
7. Pursuant to the Community Planning Act of 2011, existing deficiencies (such as the section of East Bay Drive from $4^{\text {th }}$ Street NE to Missouri Avenue) are not the responsibility of the developer

INTERSECTION ANALYSIS

An intersection analysis was conducted during the p.m. peak-hour for the existing, future background, and future total conditions. The intersection analysis was conducted in Synchro Version 11 software, which utilizes the methodologies provided in the Highway Capacity Manual (HCM), $6^{\text {th }}$ Edition. The study intersections were analyzed for a maximum volume-to-capacity (v/c) ratio by approach.

The volume to capacity ratio is a measure of how close travel demand is to reaching the roadway's physical capacity, which is calculated by dividing the traffic volume by the capacity for a system element. A v/c ratio greater than or equal to 1.0 indicates that the approach is operating at or above capacity. A v/c ratio for a movement that is less than 1.0 is considered to operate acceptably.

Existing lane geometry and traffic controls were used in the existing conditions analysis. In addition, improvements discussed in the Largo City Hall TIA submitted on October 10, 2021, were used in the future background and future total conditions analysis. Improvements included an exclusive southbound left-turn lane at the intersection of West Bay Drive \& $4^{\text {th }}$ Street NW. Current signal timing information was provided by Pinellas County and is included in Appendix F. As documented in the study area section of this report, the following intersections were included in the analysis:

- West Bay Drive \& Missouri Avenue
- West Bay Drive \& $4^{\text {th }}$ Street Northwest
- West Bay Drive \& Clearwater-Largo Road

As indicated in Table 3, the study intersections are anticipated to operate with a v/c ratio below a 1.0 during the p.m. peak-hour in existing (2023), future background (2026 without project), and future total (2026 with project) scenarios.

Signal timings and Synchro output worksheets for the operational analysis are included in Appendix F.

Kimley»Horn

Table 3: Intersection Analysis (P.M. Peak-Hour)

Notes:

1. Existing Conditions: Year 2023 Traffic volumes
2. Background Conditions: Year 2026 Traffic volumes = Existing (2023) Traffic Volumes + (vested trips from Largo City Hall or a 1\% annual growth)
3. Total Conditions: Background (Year 2026) Traffic Volumes + Project Traffic Volumes
4. Signal timings were optimized to maintain acceptable volume/capacities at the study intersections
5. Includes scheduled improvements (addition of the exclusive southbound left-turn lane) for the Background and Total Conditions Scenarios

TURN LANE ANALYSIS

Turn lane warrant thresholds were reviewed to determine the need for exclusive turn lanes at the proposed project driveways. Guidelines for determining the need for a right-turn lane were utilized based upon the FDOT Access Management Guidebook which recommends an exclusive right-turn lane when the right-turning movements are 80 vehicles per hour for a roadway with a posted speed limit below 45 miles per hour (mph). Guidelines for determining the need for a leftturn lane were utilized based upon the National Cooperative Highway Research Program (NCHRP) Report 745.

As documented previously, access to the site is provided through the following existing access connections:

- Driveway 1: Full-access connection along 1st Avenue Northwest (Building A)
- Driveway 2: Full-access connection along 6th Street Northwest (Building A)
- Driveway 3: Full-access connection along 6th Street Northwest (Building B)

If any turn-lanes are warranted, then the total turn lane length was analyzed based upon the deceleration distance required by the FDOT Florida Design Manual (FDM) Exhibit 212-1 and the calculated queue length from the methodologies of the Highway Capacity Manual (HCM) 6th Edition.

Project Driveway 1: Full-access connection along $1^{\text {st }}$ Avenue NW (Northernmost Driveway)

 As identified in Figure 6, there are anticipated to be 4 eastbound right-turns per hour during the p.m. peak-hour following buildout of the proposed development. Therefore, an exclusive eastbound right-turn lane is not warranted based upon the FDOT Access Management Guidebook.Additionally, there are anticipated to be 11 westbound left-turns per hour during the p.m. peakhour following buildout of the proposed development and approximately 20 opposing trips. Therefore, an exclusive left-turn lane is not warranted based on NCHRP 745. The $95^{\text {th }}$ percentile
westbound left-turn queue is anticipated to be less than one (1) vehicle at Project Driveway 1, based upon the results of the intersection analysis.

Project Driveway 2: Full-access connection along 6 ${ }^{\text {th }}$ Street NW (Westernmost Driveway)

As identified in Figure 6, there are anticipated to be 11 southbound right-turns per hour during the p.m. peak-hour following buildout of the proposed development. Therefore, an exclusive southbound right-turn lane is not warranted based upon the FDOT Access Management Guidebook.

Additionally, there are anticipated to be 37 northbound left-turns per hour during the p.m. peakhour following buildout of the proposed development and approximately 32 opposing trips. Therefore, an exclusive left-turn lane is not warranted based on NCHRP 745 standards. The $95^{\text {th }}$ percentile northbound left-turn queue is anticipated to be less than one (1) vehicle at Project Driveway 2, based upon the results of the intersection analysis.

Project Driveway 3: Full-access connection along 6 ${ }^{\text {th }}$ Street NW (Easternmost Driveway)

As identified in Figure 6, there are anticipated to be 50 northbound right-turns per hour during the p.m. peak-hour following buildout of the proposed development. Therefore, an exclusive northbound right-turn lane is not warranted based upon the FDOT Access Management Guidebook.

Additionally, there are anticipated to be 11 southbound left-turns per hour during the p.m. peakhour following buildout of the proposed development and approximately 103 northbound opposing trips. Therefore, an exclusive southbound left-turn lane is not warranted based on NCHRP 745 standards for a three-legged intersection. The $95^{\text {th }}$ percentile southbound left-turn queue is anticipated to be less than one (1) vehicle at Project Driveway 3, based upon the results of the intersection analysis.

Supporting documentation for the turn lane evaluation are provided in Appendix G including the FDOT Access Management Guidebook, FDM Exhibit 212-1, and NCHRP Report 745.

MULTIMODAL ANALYSIS

Existing and planned multimodal facilities within the vicinity of the proposed development were reviewed. An inventory is provided below that includes existing and planned facilities for pedestrians, bicyclists, and transit users.

Pedestrians

Sidewalks currently exist along both sides of West Bay Drive. A mid-block crossing also exists west of West Bay Drive \& $5^{\text {th }}$ Street NW and at West Bay Drive \& Ulmer Park. The site plan is included in the Appendix A and illustrates the proposed sidewalk connections along the site. Pedestrian facilities will be provided on site as well as additional gathering spaces in the center of the site. As required by the West Bay Drive Community Redevelopment District, the pedestrian zone will include ten feet of sidewalk area as well as a landscaping area.

Bicyclists

Exclusive bike paths do not currently exist along the project site.

Transit

Transit service on West Bay Drive is adjacent to the project site and is served by the Pinellas Suncoast Transit Authority (PSTA) for Route 52. The nearest transit stop along westbound West Bay Drive includes a bus shelter and bench and is located west of the intersection of West Bay Drive \& $5^{\text {th }}$ Street NW. The transit stop along eastbound West Bay Drive does not include a transit shelter or bench.

On-Street Parking

There are currently six (6) parking spaces along $1^{\text {st }}$ Avenue NW (south side) on the north side of the project site, two (2) parking spaces along $6^{\text {th }}$ Avenue NW (east side), and six (6) parking spaces along West Bay Drive (north side) on the south side of the project site.

TRANSPORTATION MANAGEMENT STRATEGIES

The West Bay Largo Mixed-Use development will encourage traffic reduction by promoting walkability through site design features. The site will promote a pedestrian friendly design with gathering space and connected walking paths. The site also includes a mixture of uses of residential and retail space. People will be able to enjoy access to the gathering site and amenities.

The site will be connected to the overall pedestrian network with the existing mid-block crosswalks along West Bay Drive. The site will foster multimodal transportation by providing bike storage. The design will follow the West Bay Drive Community Redevelopment District Plan including the requirements for the pedestrian zone in order to create a pedestrian-oriented urban environment.

CONCLUSION

The West Bay Largo Mixed-Use development is proposed in the northwest (Building A) and northeast (Building B) quadrants of the intersection of West Bay Drive \& 6th Street Northwest. The project site is approximately 2.57 acres and is proposed to include up to 276 multi-family housing units (low-rise) and 27,300 square feet of retail use. This Traffic Impact Analysis (TIA) provides an analysis of the site, including vehicular and multimodal facilities.

Based upon the results of the roadway segment analysis conducted for the existing, future background, and the future total roadway conditions, the analysis shows that all study roadway segments are anticipated to have sufficient capacity, except for the study roadway segment of East Bay Drive from $4^{\text {th }}$ Street NE to Missouri Avenue. Pursuant to the Community Planning Act of 2011, existing deficiencies (such as the section of East Bay Drive from 4th Street NE to Missouri Avenue) are not the responsibility of the developer.

Based on a previously approved traffic study (Largo City Hall, October 2021), a geometric improvement at the intersection of West Bay Drive \& $4^{\text {th }}$ Street NW was included in the Traffic Analysis. The geometric improvement, approved by the City of Largo, includes an exclusive 225foot southbound left-turn lane to help decrease the queue along $4^{\text {th }}$ Street NW. The addition of the southbound-left turn lane is anticipated to be completed by Late 2024. Therefore, this improvement was assumed for future conditions in the intersection analysis.

Based upon the results of the intersection analysis conducted, the study intersections are anticipated to operate with a v/c ratio below a 1.0 during the p.m. peak-hour in existing (2023), future background (2026 without project), and future total (2026 with project) scenarios.

APPENDIX A:
 Site Plan, and Approved M ethodology

Kimley»)Horn

February 6, 2023

Ms. Alicia Parinello, AICP
Planning Division Manager
City of Largo
P.O. Box 296

Largo, Florida 33779

RE: West Bay Largo Mixed-Use Development Traffic Impact Analysis Methodology City of Largo, Florida

Dear Ms. Parinello,

This letter summarizes the proposed Traffic Impact Analysis (TIA) study methodology for the proposed West Bay Largo Mixed-Use development located in the northwest (Building A) and northeast (Building B) quadrants of West Bay Drive \& $6^{\text {th }}$ Street Northwest. The project site is 2.57 acres and has an estimated buildout year of 2026. A location map and conceptual site plan for the development are attached for reference.

To appropriately address transportation impacts related to the proposed West Bay Largo Mixed-Use development, Kimley-Horn will conduct an analysis that follows the proposed methodology provided below for your review and comments.

As illustrated in the attached conceptual site plan, access to the site is proposed to be provided through the following access connections:

- One (1) full-access connection along $6^{\text {th }}$ Street Northwest (Building A)
- One (1) full-access connection along $6^{\text {th }}$ Street Northwest (Building B)
- One (1) full-access connection along $1^{\text {st }}$ Avenue Northwest (Building A)

The proposed development will consist of the following land uses and densities:

- 276 multi-family housing units (low-rise)
- $27,300 \mathrm{sq} \mathrm{ft}$. of retail use

TRIP GENERATION

Trip generation for the proposed development was calculated based on rates provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition for the land uses identified above. The trip generation potential of the proposed development was calculated using land use code (LUC) 220 (Multifamily Housing (Low-Rise) and 822 (Strip Retail Plaza (<40k)).

Modifications to the base trip generation estimates are sometimes applied due to internal capture and pass-by trips. Internal capture is the tendency for customers or residents to visit the retail, office, or residential sections of a site in one trip but be counted multiple times in the trip generation since the

Kimley»Horn

formulas assume developments are isolated. Pass-by trips are existing vehicles on the surrounding roadways which are attracted into the site by the presence of the development. Pass-by trips do not reduce the overall trip generation or driveway turning movement volumes but do reduce the number of new trips added to the roadway system. Internal capture and pass-by were utilized in this analysis. Pass-by and internal capture were calculated using the methodology provided in the Institute of Transportation Engineers (ITE) Trip Generation Handbook, 3rd Edition: An ITE Proposed Recommended Practice. Internal capture calculations and pass-by documentation are attached.

The proposed development is anticipated to generate 212 net new p.m. peak hour trips (124 entering/88 exiting). A table showing the p.m. peak-hour trip generation is attached.

Table 1: P.M. Peak-Hour Trip Generation

ITE TRIP GENERATION CHARACTERISTICS			DIRECTIONAL DISTRIBUTION Percent		GROSS TRIPS			INTERNAL CAPTURE		TOTAL EXTERNAL TRIPS			PASS-BY CAPTURE*		NET NEW EXTERNAL TRIPS		
Land Use	Scale	ITE Units							IC					PB			
			In	Out	In	Out	Total	Percent	Trips	In	Out	Total	Percent	Trips	In	Out	Total
Multi-Family Housing (Low-Rise)	276	DU	63\%	37\%	88	51	139	20.9\%	29	67	43	110	-	-	67	43	110
Strip Retail Plaza (<40k)	27.3	KSF	50\%	50\%	79	79	158	18.4\%	29	71	58	129	17.1\%	27	57	45	102
				Total:	167	130	297	-	58	138	101	239	-	27	124	88	212

*Note: Pass-by trips assumed for this site do not exceed 10\% of the adjacent street traffic

TRIP DISTRIBUTION

The distribution and assignment of project traffic will be performed using the Florida Standard Urban Transportation Model Structure (FSUTMS) transportation planning model outputs. The latest FDOT District Seven Regional Planning Model will be used to generate model distribution of project trips. The FSUTMS model output is attached for your approval.

STUDY AREA

The study area is proposed to consist of the project access driveways along the $6^{\text {th }}$ Street Northwest and $1^{\text {st }}$ Avenue Northwest roadway segments along with the following adjacent intersections:

- $1^{\text {st }}$ Avenue Northwest \& Ridge Road Northwest
- $1^{\text {st }}$ Avenue Northwest \& $6^{\text {th }}$ Street Northwest
- $1^{\text {st }}$ Avenue Northwest \& $5^{\text {th }}$ Street Northwest
- West Bay Drive \& Clearwater Largo Road North
- West Bay Drive \& $6{ }^{\text {th }}$ Street Northwest

Kimley»Horn

In addition, the following roadway segments directly adjacent to the project site will be analyzed as well:

- $1^{\text {st }}$ Avenue Northwest from Ridge Road Northwest to $5^{\text {th }}$ Street Northwest
- West Bay Drive from Clearwater Largo Road North to 6 ${ }^{\text {th }}$ Street Northwest
- $6^{\text {th }}$ Street Northwest from West Bay Drive to $1^{\text {st }}$ Avenue Northwest

BACKGROUND GROWTH RATE

A growth rate was determined by using FDOT historical Annual Average Daily Traffic (AADT) information for three nearby roadway segments of State Road 686/East Bay Drive (East of US Alt 19), US Alt 19 (South of $4^{\text {th }}$ Avenue Northwest), and Clearwater-Largo Road (North of West Bay Drive) was initially calculated as -2.49%, however a 1% growth rate will be used in order to provide a conservative analysis. Growth rate calculations are attached for reference.

TRAFFIC ANALYSIS

The study area roadway segments will be analyzed relative to the service volumes found in the Pinellas County 2022 Annual Level of Service Report (2021 data) as well as in the FDOT Generalized Peak Hour Two-Way Volumes for Florida's Urbanized Areas (2023). The roadway analysis will evaluate study roadway segments for the existing, background, and future total (year 2026 traffic conditions for the p.m. peak-hour.) The study intersections will be analyzed for future buildout conditions during the p.m. peak-hour.

TURN LANE ANALYSIS

Potential future left-turn and right-turn lane requirements will be evaluated (including needed sufficient storage length) with the addition of project traffic.

MULTI-MODAL ANALYSIS

A multi-modal analysis will be included in the report and will consider bicycle connectivity, transit routes, and pedestrian mobility. The analysis will demonstrate how the project will be connected to any existing pedestrian and bicycle facilities. A multi-modal map will be provided showing the existing sidewalks as well as any proposed sidewalks for this development.

Kimley»Horn

DOCUMENTATION

The results of the traffic analysis will be summarized in a Traffic Impact Analysis (TIA) report. The report will contain supporting documents including turn lane warrants and intersection analyses software outputs. The report will also include text and graphics necessary to summarize the analysis and any assumptions made.

We will follow-up to see if you have any questions regarding this methodology.
Very truly yours,

KIMLEY-HORN AND ASSOCIATES, INC.

Christopher Hatton, P.E. Principal

Omar Peerzada
Transportation Planning Analyst

Attachments:
Project Location Map
Conceptual Site Plan
Trip Generation
Internal Capture Calculations
FSUTMS Model Output
Growth Rate Calculations

PROJECT TRIP GENERATION COMPARISON

P.M. PEAK-HOUR OF ADJACENT STREET TRAFFIC

ITE TRIP GENERATION CHARACTERISTICS					DIRECTIONAL DISTRIBUTION Percent		GROSS TRIPS			INTERNAL		TOTALEXTERNAL TRIPS			PASS-BY CAPTURE		NET NEWEXTERNAL TRIPS		
Land Use	$\begin{gathered} \text { ITE } \\ \text { Edition } \end{gathered}$	$\begin{gathered} \hline \text { ITE } \\ \text { Code } \end{gathered}$	Scale	$\begin{gathered} \begin{array}{c} \text { ITE } \\ \text { Units } \end{array} \end{gathered}$			In	Out	Total	Percent	$\begin{gathered} \hline \text { IC } \\ \text { Trips } \end{gathered}$	In	Out	Total	Percent	$\stackrel{\text { PB }}{\text { Trips }}$	In	Out	Total
Multifamily Housing Low-Rise	11	220	276	DU	63\%	37\%	88	51	139	20.9\%	29	67	43	110	0.0\%	0	67	43	110
Strip Retail Plaza (<40k)	11	822	27.3	KSF	50\%	50\%	79	79	158	18.4\%	29	71	58	129	17.1\%	27	57	45	102
						Total:	167	130	297	19.5\%	58	138	101	239	9.7\%	27	124	88	212

Kimley»)Horn

Intemal Capture Reduction Calalations

M ethodology for A.M. Peak Hour and P.M. Peak Hour
based on the Trip Generation Handbook, 3rd Edition, published by the Institute of Transportation Engineers
M ethodology for Daily
based on the average of the Unconstrained Rates for the A.M . Peak Hour and P.M . Peak Hour

SUMMARY (EXISTING)

Project: Wesy Bay Largo Mixed-Use Location: Gty of Largo, FL

Notes: FDOT Historical AADT

Volume Source \#1: 5039-SR 686/E BAY DR, E OF SR 595/SR 651/US Volume Source \#2: 0048-SR 651/SR 595/ALT US19/SMISSOURI AV Volume Source \#3: 9176- CEARWATER-LARGO RD, N OF WEST BAI Volume Source \#4: Volume Source \#5:

Month	Year
	2017
2018	
	2019
	2020
	2021

Volume Source \#1	Volume Source \#2	Volume Source \#3	Volume Source \#4	Volume Source \#5	Average Volume Solu.33333
45000	33000	22000			33333.33300
42000	33500	22000		32500	
42000	33500	17700		31066.66667	
42000	31000	16500		29833.33333	
43500	30000	18600		30700	

Line
1
2
3
4
5
6
7
8
9
10

INPUT DATA			
Month		Aggregate	
		Traffic	
	Year	Volume	Line
	2017	33333.33333	1
	2018	32500	2
	2019	31066.66667	3
	2020	29833.33333	4
	2021	30700	5
			6
			7
			8
			9
			10

COUNTY: 15 - PINELLAS
SITE: 0048 - SR 651/SR 595/ALT US 19/S MISSOURI AVE, S OF 4TH AVE NW

YEAR	AADT	DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2021	30000 C	N	15500	S	14500	9.00	53.00	2.40
2020	31000 C	N	15500	S	15500	9.00	55.30	3.20
2019	33500 F	N	17000	S	16500	9.00	55.70	3.20
2018	33500 C	N	17000	S	16500	9.00	55.50	3.20
2017	33000 F	N	17000	S	16000	9.00	54.50	3.00
2016	32000 C	N	16500	S	15500	9.00	55.90	3.00
2015	34000 C	N	17500	S	16500	9.00	55.00	3.40
2014	32000 C	N	16000	S	16000	9.00	55.40	3.60
2013	32000 C	N	15500	S	16500	9.00	55.20	3.70
2012	32000 C	N	16000	S	16000	9.00	55.00	2.40
2011	34000 C	N	17000	S	17000	9.00	56.50	2.40
2010	36000 C	N	18000	S	18000	10.52	55.26	2.50
2009	37000 C	N	18500	S	18500	10.53	55.79	2.40
2008	36000 C	N	18000	S	18000	10.29	58.46	2.80
2007	39500 F	N	20000	S	19500	10.31	56.79	3.20
2006	39500 C	N	20000	S	19500	9.88	58.53	3.20

COUNTY: 15 - PINELLAS
SITE: 5039 - SR 686/E BAY DR, E OF SR 595/SR 651/US ALT 19/SEMINOLE BLVD

YEAR	AADT		DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2021	43500	C	E	21500	W	22000	9.00	53.00	3.20
2020	42000	C	E	20500	W	21500	9.00	55.30	3.20
2019	42000	F	E	21000	W	21000	9.00	55.70	3.30
2018	42000	C	E	21000	W	21000	9.00	55.50	3.30
2017	45000	F	E	22000	W	23000	9.00	54.50	3.40
2016	44000	C	E	21500	W	22500	9.00	55.90	3.40
2015	44000	C	E	22000	W	22000	9.00	55.00	3.30
2014	44000	C	E	21500	W	22500	9.00	55.40	2.60
2013	45000	C	E	22000	W	23000	9.00	55.20	2.90
2012	43500	C	E	21000	W	22500	9.00	55.00	2.60
2011	43500	C	E	21000	W	22500	9.00	56.50	2.70
2010	45000	C	E	22000	W	23000	10.52	55.26	3.20
2009	44500	C	E	21500	W	23000	10.53	55.79	2.90
2008	43500	C	E	21000	W	22500	10.29	58.46	3.10
2007	47500	C	E	24500	W	23000	10.31	56.79	3.10
2006	45500	C	E	22500	W	23000	9.88	58.53	3.00

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE $S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X = UNKNOWN
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES
COUNTY: 15 - PINELLAS
SITE: 9176 - CLEARWATER-LARGO RD, N OF WEST BAY DR (HPMS)

YEAR	AADT		DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2021	18600	C	N	9200	S	9400	9.00	53.00	6.20
2020	16500	F	N	8200	S	8300	9.00	55.30	5.90
2019	17700	C	N	8800	S	8900	9.00	55.70	5.20
2018	22000	X		0		0	9.00	55.50	4.10
2017	22000	X		0		0	9.00	54.50	5.10
2016	21500	E		0		0	9.00	55.90	4.40
2015	21000	E		0		0	9.00	55.00	4.40
2014	20300	E					9.00	55.40	4.20
2013	20000	S	N	9500	S	10500	9.00	55.20	2.40
2012	20000	F	N	9500	S	10500	9.00	55.00	2.40
2011	20000	C	N	9500	S	10500	9.00	56.50	2.40

APPENDIX B: Internal Capture Calculations, and (FSUTMS) M odel Output for District 7

Internal Capture Reduction Calculations

Methodology for A.M. Peak Hour and P.M. Peak Hour based on the Trip Generation Handbook, 3rd Edition, published by the Institute of Transportation Engineers

Methodology for Daily
based on the average of the Unconstrained Rates for the A.M. Peak Hour and P.M. Peak Hour

SUMMARY (EXISTING)

APPENDIX C: 2021 Turning M ovement Counts, Largo City Hall Project Volumes, and Growth Rate Calculations

National Data \& Surveying Services

Site Code:	21-120338-002
Date:	$08 / 18 / 2021$
Weather:	Sunny
City:	Largo
County:	Pinellas
Count Times:	$\mathbf{0 7 : 0 0 - 0 9 : 0 0}$
	$\mathbf{1 6 : 0 0 - 1 8 : 0 0}$
	Signalized

SIGNAL TIMING

PHASES	1	2	3
NT/ST	00:40	00:34	00:26
WL/WT	-	00:16	-
ET/WT	02:46	02:37	02:55

National Data \& Surveying Services

Site Code:	21-120338-001
Date:	$08 / 18 / 2021$
Weather:	Sunny
City:	Largo
County:	Pinellas
Count Times:	07:00-09:00
	16:00-18:00
Control:	No Control

N/S Street: 5th St NW	Speed: N/A

Project: Wesy Bay Largo Mixed-Use	Volume Source \#1:	5039- SR 686/E BAY DR, E OF SR 595/SR
		651/USALT 19/SEMINOLE BLVD
		0048-SR 651/SR 595/ALT US 19/SMISSOUR
Location: Gty of Largo, FL	Volume Source \#2:	AVE, SOF 4TH AVE NW
		9176- CEARWATER-LARGO RD, N OF WEST
Notes: FDOT Historical AADT	Volume Source \#3:	BAY DR (HPMS)
	Volume Source \#4:	
	Volume Source \#5:	

Line	Month	Year	Volume Source \#1	Volume Source \#2	Volume Source \#3	Volume Source \#4	Volume Source \#5	Average Volume
1		2017	45000	33000	22000		33333.33333	
2	2018	42000	33500	22000		32500		
3	2019	42000	33500	17700	31066.66667			
4	2020	42000	31000	16500				
5	2021	43500	30000	18600		30700		

Line
1
2
3
4
5

COUNTY: 15 - PINELLAS
SITE: 5039 - SR 686/E BAY DR, E OF SR 595/SR 651/US ALT 19/SEMINOLE BLVD

YEAR	AADT		DIRECTION 1			RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	43500	C	E	21500	W	22000	9.00	53.00	3.20
2020	42000	C	E	20500	W	21500	9.00	55.30	3.20
2019	42000	F	E	21000	W	21000	9.00	55.70	3.30
2018	42000	C	E	21000	W	21000	9.00	55.50	3.30
2017	45000	F	E	22000	W	23000	9.00	54.50	3.40
2016	44000	C	E	21500	W	22500	9.00	55.90	3.40
2015	44000	C	E	22000	W	22000	9.00	55.00	3.30
2014	44000	C	E	21500	W	22500	9.00	55.40	2.60
2013	45000	C	E	22000	W	23000	9.00	55.20	2.90
2012	43500	C	E	21000	W	22500	9.00	55.00	2.60
2011	43500	C	E	21000	W	22500	9.00	56.50	2.70
2010	45000	C	E	22000	W	23000	10.52	55.26	3.20
2009	44500	C	E	21500	W	23000	10.53	55.79	2.90
2008	43500	C	E	21000	W	22500	10.29	58.46	3.10
2007	47500	C	E	24500	W	23000	10.31	56.79	3.10
2006	45500	C	E	22500	W	23000	9.88	58.53	3.00

AADT FLAGS: $\mathrm{C}=$ COMPUTED; $\mathrm{E}=$ MANUAL ESTIMATE; $\mathrm{F}=\mathrm{FIRST}$ YEAR ESTIMATE $S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X = UNKNOWN
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES
COUNTY: 15 - PINELLAS
SITE: 0048 - SR 651/SR 595/ALT US 19/S MISSOURI AVE, S OF 4TH AVE NW

YEAR	AADT		DIRECTION 1			RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	30000	C	N	15500	S	14500	9.00	53.00	2.40
2020	31000	C	N	15500	S	15500	9.00	55.30	3.20
2019	33500	F	N	17000	S	16500	9.00	55.70	3.20
2018	33500	C	N	17000	S	16500	9.00	55.50	3.20
2017	33000	F	N	17000	S	16000	9.00	54.50	3.00
2016	32000	C	N	16500	S	15500	9.00	55.90	3.00
2015	34000	C	N	17500	S	16500	9.00	55.00	3.40
2014	32000	C	N	16000	S	16000	9.00	55.40	3.60
2013	32000	C	N	15500	S	16500	9.00	55.20	3.70
2012	32000	C	N	16000	S	16000	9.00	55.00	2.40
2011	34000	C	N	17000	S	17000	9.00	56.50	2.40
2010	36000	C	N	18000	S	18000	10.52	55.26	2.50
2009	37000	C	N	18500	S	18500	10.53	55.79	2.40
2008	36000	C	N	18000	S	18000	10.29	58.46	2.80
2007	39500	F	N	20000	S	19500	10.31	56.79	3.20
2006	39500	C	N	20000	S	19500	9.88	58.53	3.20

AADT FLAGS: $\mathrm{C}=$ COMPUTED; $\mathrm{E}=$ MANUAL ESTIMATE; $\mathrm{F}=\mathrm{FIRST}$ YEAR ESTIMATE $S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X = UNKNOWN
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES
COUNTY: 15 - PINELLAS
SITE: 9176 - CLEARWATER-LARGO RD, N OF WEST BAY DR (HPMS)

YEAR	AADT	DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2021	18600 C	N	9200	S	9400	9.00	53.00	6.20
2020	16500 F	N	8200	S	8300	9.00	55.30	5.90
2019	17700 C	N	8800	S	8900	9.00	55.70	5.20
2018	22000 X		0		0	9.00	55.50	4.10
2017	22000 X		0		0	9.00	54.50	5.10
2016	21500 E		0		0	9.00	55.90	4.40
2015	21000 E		0		0	9.00	55.00	4.40
2014	20300 E					9.00	55.40	4.20
2013	20000 S	N	9500	S	10500	9.00	55.20	2.40
2012	20000 F	N	9500	S	10500	9.00	55.00	2.40
2011	20000 C	N	9500	S	10500	9.00	56.50	2.40

AADT FLAGS: $C=$ COMPUTED; $E=$ MANUAL ESTIMATE; $F=$ FIRST YEAR ESTIMATE $S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X = UNKNOWN
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

APPENDIX D:
 2022 Annual Level of Service Report for Forward Pinellas, and FDOT's Generalized LOS Volume Tables

FORWARD PINELLAS

Integrating Land Use \& Transportation

2022 Annual Level of Service Report 2021 Data Year

INTERRUPTED FLOW FACILITIES

UNINTERRUPTED FLOW FACILITIES

STATE SIGNALIZED ARTERIALS

Class I (40 mph or higher posted speed limit)

Lanes	Median	B	C	D	E
2	Undivided	$*$	1,510	1,600	$* *$
4	Divided	$*$	3,420	3,580	$* *$
6	Divided	$*$	5,250	5,390	$* *$
8	Divided	$*$	7,090	7,210	$* *$

Class II (35 mph or slower posted speed limit)

Lanes	Median	B	C	D	E
2	Undivided	$*$	660	1,330	1,410
4	Divided	$*$	1,310	2,920	3,040
6	Divided	$*$	2,090	4,500	4,590
8	Divided	$*$	2,880	6,060	6,130

Non-State Signalized Roadway Adjustments
(Alter corresponding state volumes
by the indicated percent.)
Non-State Signalized Roadways -10\%
Median \& Turn Lane Adjustments

		Exclusive	Exclusive	Adjustment
Lanes	Median	Left Lanes	Right Lanes	Factors
2	Divided	Yes	No	$+5 \%$
2	Undivided	No	No	-20%
Multi	Undivided	Yes	No	-5%
Multi	Undivided	No	No	-25%
-	-	-	Yes	$+5 \%$

One-Way Facility Adjustment

Multiply the corresponding two-directional volumes in this table by 0.6

BICYCLE MODE ${ }^{2}$

(Multiply vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)
Paved
Shoulder/Bicycle

Lane Coverage	B	C	D	E
$0-49 \%$	$*$	260	680	1,770
$50-84 \%$	190	600	1,770	$>1,770$
$85-100 \%$	830	1,700	$>1,770$	$* *$

PEDESTRIAN MODE ${ }^{2}$

(Multiply vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Sidewalk Coverage	B	C	D	E
$0-49 \%$	$*$	$*$	250	850
$50-84 \%$	$*$	150	780	1,420
$85-100 \%$	340	960	1,560	$>1,770$

(Buses in peak hour in peak direction)

Sidewalk Coverage	B	C	D	E
$0-84 \%$	>5	≥ 4	≥ 3	≥ 2
$85-100 \%$	>4	≥ 3	≥ 2	≥ 1

APPENDIX E: 2023 Turning M ovements Counts, and Peak-Season Conversion Factors (PSCF)

National Data \& Surveying Services

Site Code:	23-120159-004
Date:	$\mathbf{0 4 / 1 2 / 2 0 2 3}$
Weather:	Sunny
City:	Largo
County:	Pinellas
Count Times:	$\mathbf{1 6 : 0 0 - 1 8 : 0 0}$
Control:	Signalized

SIGNAL TIMING
PHASES

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
NL/NT	$00: 29$	$00: 28$	$00: 26$
NT/ST	$00: 19$	$00: 19$	$00: 22$
SL/ST	$00: 22$	$00: 22$	$00: 22$
EL/ET	$00: 25$	$00: 22$	$00: 25$
ET/WT	$01: 19$	$01: 23$	$01: 18$
WL/WT	$00: 30$	$00: 29$	$00: 32$

Seminole Blvd/ Missouri Ave N \& W Bay Dr Peak Hour Tuming Movement Count

National Data \& Surveying Services

Site Code:	23-120159-002	
Date:	04/12/2023	
Weather:	Sunny	
City:	Largo	
County:	Pinellas	
Count Times:	16:00-18:00	
Control:	Signalized	
SIGNAL TIMING		
PHASES		
NL		
ET/WT		

Prepared by National Data \& Surveying Services

4th St NW/ SW \& W Bay Dr

Peak Hour Tuming Movement Count

ID: 23-120159-002
City: Largo

SOUTHBOUND

AM	0	0	0	0	0	AM
	0	0	0	0	0	NOON
PM	0	0	0	0	0	PM

Day: Wednesday
Date: 4/12/2023

HT (NOON)

HT (PM)

National Data \& Surveying Services

Site Code:	23-120159-001
Date:	04/12/2023
Weather:	Sunny
City:	Largo
County:	Pinellas
Count Times:	$\mathbf{1 6 : 0 0 - 1 8 : 0 0}$
Control:	No Control

N/S Street: 5th St NW/SW	Speed: N/A

Prepared by National Data \& Surveying Services

fth St NW/ SW \& W Bay Dr

Peak Hour Turing Movement Count

ID: 23-120159-001
City: Largo

PM	2	0	0	0	0	PM
	0	0	0	0	0	NOON
AM	0	0	0	0	0	AM
NORTHBOUND						
th St NW/SW						

SOUTHBOUND

AM	0	0	0	0	0	AM
NOON	0	0	0	0	0	NOON
PM	0	0	0	0	0	PM

Cars (NOON)

Cars (PM)

Day: Wednesday
Date: 4/12/2023

HT (PM)

National Data \& Surveying Services

Site Code:	$\mathbf{2 3 - 1 2 0 1 5 9 - 0 0 3}$
Date:	$\mathbf{0 4 / 1 2 / 2 0 2 3}$
Weather:	Sunny
City:	Largo
County:	Pinellas
Count Times:	$\mathbf{1 6 : 0 0 - 1 8 : 0 0}$
Control:	Signalized

SIGNAL TIMING

PHASES

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
NL/NT	$00: 25$	$00: 22$	$00: 22$
NT/ST	$00: 08$	$00: 32$	$00: 43$
SL/ST	$00: 54$	$00: 36$	$00: 32$
WL/WT	$00: 29$	$00: 26$	$00: 18$
ET/WT	$01: 06$	$01: 05$	$01: 05$
EL/ET	$00: 22$	$00: 24$	$00: 22$

Prepared by National Data \& Surveying Services
Clearwater Largo Rd \& W Bay Dr
Peak Hour Tuming Movement Count
ID: 23-120159-003
City: Largo

Cars (NOON)

Cars (PM)

[^0]
APPENDIX F: Synchro Outputs, and Traffic Signal Timing

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1 / 4}$	㻢		\％${ }^{1}$	44	「	\％${ }^{1 / 4}$	种	「	${ }^{7} 1$	坐种	「
Traffic Volume（vph）	169	1103	25	324	1074	292	159	868	343	260	842	212
Future Volume（vph）	169	1103	25	324	1074	292	159	868	343	260	842	212
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	200		0	230		0	290		390	200		190
Storage Lanes	2		0	2		1	2		1	1		1
Taper Length（tt）	80			90			100			170		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		35			35			40			40	
Link Distance（ft）		1411			903			1167			1345	
Travel Time（s）		27.5			17.6			19.9			22.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	5\％	2\％	0\％	2\％	1\％	1\％	3\％	1\％	2\％	1\％	1\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	184	1226	0	352	1167	317	173	943	373	283	915	230
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（tt）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（tt）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector（ ft ）	20	100		20	100	20	20	100	20	20	100	20
Trailing Detector（ft）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Position（tt）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Size（ft）	20	6		20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex		Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$

Intersection Summary \quad Other
Area Type:
Cycle Length: 180
Actuated Cycle Length: 180
Offset: 112 (62\%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 130
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection Summary \quad Other
Area Type:
Cycle Length: 204
Actuated Cycle Length: 204
Offset: 0 (0\%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 110
Control Type: Actuated-Coordinated

21：Clearwater Largo Rd N \＆W Bay Dr

	4	\rightarrow		7			4	\dagger	7	v	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	瑯		\％	性		${ }^{17}$	鲑		${ }^{7} 1$	虫	
Traffic Volume（veh／h）	162	941	171	208	926	148	172	466	91	212	657	136
Future Volume（veh／h）	162	941	171	208	926	148	172	466	91	212	657	136
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1885	1885	1885	1841	1885	1870	1885	1841	1900	1885
Adj Flow Rate，veh／h	172	1001	182	221	985	157	183	496	97	226	699	145
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh，\％	2	2	1	1	1	4	1	2	1	4	0	1
Cap，veh／h	205	1212	220	417	1423	227	216	535	104	443	737	153
Arrive On Green	0.06	0.40	0.40	0.24	0.92	0.92	0.06	0.18	0.18	0.13	0.25	0.25
Sat Flow，veh／h	3456	3004	545	3483	3095	493	3483	2966	577	3401	2977	617
Grp Volume（v），veh／h	172	592	591	221	570	572	183	296	297	226	424	420
Grp Sat Flow（s），veh／h／ln	1728	1777	1772	1742	1791	1796	1742	1777	1766	1700	1805	1789
Q Serve（g＿s），s	10.1	60.7	61.0	11.3	14.3	14.3	10.6	33.4	33.8	12.6	47.1	47.1
Cycle Q Clear（g＿c），s	10.1	60.7	61.0	11.3	14.3	14.3	10.6	33.4	33.8	12.6	47.1	47.1
Prop In Lane	1.00		0.31	1.00		0.27	1.00		0.33	1.00		0.34
Lane Grp Cap（c），veh／h	205	717	715	417	824	826	216	321	319	443	447	443
V／C Ratio（X）	0.84	0.83	0.83	0.53	0.69	0.69	0.85	0.92	0.93	0.51	0.95	0.95
Avail Cap（c＿a），veh／h	263	717	715	417	824	826	258	421	418	443	498	494
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	95.0	54.4	54.5	72.6	5.0	5.0	94.7	82.2	82.3	82.7	75.4	75.5
Incr Delay（d2），s／veh	14.1	10.5	10.6	0.7	4.7	4.7	17.3	19.6	21.1	0.4	25.4	25.8
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	8.6	38.2	38.2	8.4	6.4	6.4	9.1	23.9	24.2	9.5	33.4	33.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	109.1	64.9	65.1	73.2	9.7	9.7	112.0	101.8	103.5	83.1	100.9	101.2
LnGrp LOS	F	E	E	E	A	A	F	F	F	F	F	F
Approach Vol，veh／h		1355			1363			776			1070	
Approach Delay，s／veh		70.6			20.0			104.8			97.3	
Approach LOS		E			C			F			F	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $G+Y+R c$ ），s	20.6	102.9	35.9	44.5	33.5	90.0	20.5	59.9				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	8.5	＊ 9.1	＊ 9.4	＊ 7.7	＊ 9.1	＊ 7.7	7.9	＊ 9.4				
Max Green Setting（Gmax），s	15.5	＊ 85	＊ 22	＊ 48	＊ 18	＊ 82	15.1	＊ 56				
Max Q Clear Time（g＿c＋11），s	12.1	16.3	14.6	35.8	13.3	63.0	12.6	49.1				
Green Ext Time（p＿c），s	0.0	2.9	0.1	1.1	0.1	2.7	0.0	1.4				
Intersection Summary												
HCM 6th Ctrl Delay			67.6									
HCM 6th LOS			E									
Notes												

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\％	蚛		\％	中4	「	${ }^{1 / 4}$	性4	「	${ }^{7 *}$	坐种	「7
Traffic Volume（vph）	192	1155	36	324	1109	292	167	868	343	260	842	227
Future Volume（vph）	192	1155	36	324	1109	292	167	868	343	260	842	227
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	200		0	230		0	290		390	200		190
Storage Lanes	2		0	2		1	2		1	1		1
Taper Length（ft）	80			90			100			170		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		35			35			40			40	
Link Distance（ft）		1411			903			1167			1345	
Travel Time（s）		27.5			17.6			19.9			22.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	5\％	2\％	0\％	2\％	1\％	1\％	3\％	1\％	2\％	1\％	1\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	209	1294	0	352	1205	317	182	943	373	283	915	247
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（t）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15			15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector（ft）	20	100		20	100	20	20	100	20	20	100	20
Trailing Detector（ft）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Position（ft）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Size（ft）	20	6		20	6	20	20	6	20	20	6	20
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection Summary \quad Other
Area Type:
Cycle Length: 204
Actuated Cycle Length: 204
Offset: 48 (24\%), Referenced to phase 2:WBTL and 6:EBTL, Start of Yellow
Natural Cycle: 100
Control Type: Actuated-Coordinated
$m \quad$ Volume for 95th percentile queue is metered by upstream signal.

	4	\rightarrow		7		4	4	\dagger	p	\％		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{*}$	中 ${ }^{\text {c }}$			\uparrow	「7	${ }^{7}$	$\hat{\beta}$	
Traffic Volume（veh／h）	38	1314	16	52	1310	45	15	10	93	124	16	48
Future Volume（veh／h）	38	1314	16	52	1310	45	15	10	93	124	16	48
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1870	1900	1811	1885	1900	1900	1900	1870	1900	1900	1900
Adj Flow Rate，veh／h	41	1428	17	57	1424	49	16	11	101	135	17	52
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	2	0	6	1	0	0	0	2	0	0	0
Cap，veh／h	236	2419	29	316	2584	89	89	54	116	252	79	242
Arrive On Green	1.00	1.00	1.00	0.02	0.73	0.73	0.07	0.07	0.07	0.08	0.19	0.19
Sat Flow，veh／h	365	3597	43	1725	3533	121	825	742	1585	1810	412	1261
Grp Volume（v），veh／h	41	705	740	57	721	752	27	0	101	135	0	69
Grp Sat Flow（s），veh／h／ln	365	1777	1863	1725	1791	1863	1566	0	1585	1810	0	1673
Q Serve（g＿s），s	5.0	0.0	0.0	2.1	36.9	37.1	1.7	0.0	12.9	13.8	0.0	7.1
Cycle Q Clear（g＿c），s	30.1	0.0	0.0	2.1	36.9	37.1	3.1	0.0	12.9	13.8	0.0	7.1
Prop In Lane	1.00		0.02	1.00		0.07	0.59		1.00	1.00		0.75
Lane Grp Cap（c），veh／h	236	1195	1253	316	1310	1363	143	0	116	252	0	321
V／C Ratio（X）	0.17	0.59	0.59	0.18	0.55	0.55	0.19	0.00	0.87	0.54	0.00	0.21
Avail Cap（c＿a），veh／h	236	1195	1253	358	1310	1363	268	0	246	569	0	751
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	0.53	0.53	0.53	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	2.8	0.0	0.0	9.1	12.3	12.3	88.9	0.0	93.6	77.7	0.0	69.4
Incr Delay（d2），s／veh	1.6	2.1	2.1	0.1	0.9	0.9	0.2	0.0	7.3	0.7	0.0	0.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／In	0.7	1.3	1.3	1.5	19.9	20.7	2.5	0.0	9.5	10.8	0.0	5.6
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	4.4	2.1	2.1	9.2	13.2	13.2	89.2	0.0	100.9	78.4	0.0	69.6
LnGrp LOS	A	A	A	A	B	B	F	A	F	E	A	E
Approach Vol，veh／h		1486			1530			128			204	
Approach Delay，s／veh		2.2			13.1			98.4			75.4	
Approach LOS		A			B			F			E	
Timer－Assigned Phs		2	3	4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s		156.4	24.2	23.4	12.0	144.4		47.6				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		＊ 7.2	＊ 8.4	＊ 8.4	＊ 7.2	＊ 7.2		＊ 8.4				
Max Green Setting（Gmax），s		＊ 97	＊ 52	＊ 32	＊ 9.8	＊ 80		＊92				
Max Q Clear Time（g＿c＋11），s		39.1	15.8	14.9	4.1	32.1		9.1				
Green Ext Time（p＿c），s		4.2	0.1	0.1	0.0	4.7		0.2				
Intersection Summary												
HCM 6th Ctrl Delay 15.3												
HCM 6th LOS B												

Notes
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

Intersection Summary Other
Area Type:
Cycle Length: 204
Actuated Cycle Length: 204
Offset: 0 (0\%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natura Cycle: 120
Control Type: Actuated-Coordinated

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	中 ${ }^{\text {P }}$		${ }^{7 \%}$	44	「	\％ 7	蚛	「	${ }^{7 \%}$	444	「
Traffic Volume（vph）	203	1191	42	324	1160	292	176	868	343	260	842	242
Future Volume（vph）	203	1191	42	324	1160	292	176	868	343	260	842	242
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	200		0	230		0	290		390	200		190
Storage Lanes	2		0	2		1	2		1	1		1
Taper Length（ft）	80			90			100			170		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		35			35			40			40	
Link Distance（ft）		1411			903			1167			1345	
Travel Time（s）		27.5			17.6			19.9			22.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	5\％	2\％	0\％	2\％	1\％	1\％	3\％	1\％	2\％	1\％	1\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	221	1341	0	352	1261	317	191	943	373	283	915	263
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（tt）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector（ft）	20	100		20	100	20	20	100	20	20	100	20
Trailing Detector（ft）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Position（tt）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Size（tt）	20	6		20	6	20	20	6	20	20	6	20
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$							

Intersection Summary \quad Other
Area Type:
Cycle Length: 180
Actuated Cycle Length: 180
Offset: 112 (62\%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 140
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	中 ${ }^{\text {a }}$		\％	中 ${ }^{\text {P }}$			\uparrow	「	${ }^{7}$	\uparrow	
Traffic Volume（vph）	38	1314	16	52	1378	51	15	10	93	177	16	48
Future Volume（vph）	38	1314	16	52	1378	51	15	10	93	177	16	48
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（t）	150		0	250		0	0		115	215		0
Storage Lanes	1		0	1		0	0		1	1		0
Taper Length（ft）	50			50			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		417			1411			435			587	
Travel Time（s）		9.5			32.1			9.9			13.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	0\％	2\％	0\％	6\％	1\％	0\％	0\％	0\％	2\％	0\％	0\％	0\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	41	1445	0	57	1553	0	0	27	101	192	69	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		24			24			12			12	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector（ t ）	20	100		20	100		20	100	20	20	100	
Trailing Detector（ft）	0	0		0	0		0	0	0	0	0	
Detector 1 Position（ft）	0	0		0	0		0	0	0	0	0	
Detector 1 Size（ft）	20	6		20	6		20	6	20	20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		Cl＋Ex			$\mathrm{Cl}+\mathrm{Ex}$			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		pm＋pt	NA		Perm	NA	Perm	pm＋pt	NA	
Protected Phases		6		5	2			4		3	8	
Permitted Phases	6			2			4		4	8		
Detector Phase	6	6		5	2		4	4	4	3	8	
Switch Phase												
Minimum Initial（s）	10.0	10.0		5.0	10.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split（s）	25.2	25.2		12.2	25.2		26.4	26.4	26.4	13.4	26.4	
Total Split（s）	87.0	87.0		17.0	104.0		40.0	40.0	40.0	60.0	100.0	
Total Split（\％）	42．6\％	42．6\％		8．3\％	51．0\％		19．6\％	19．6\％	19．6\％	29．4\％	49．0\％	
Maximum Green（s）	79.8	79.8		9.8	96.8		31.6	31.6	31.6	51.6	91.6	
Yellow Time（s）	3.7	3.7		3.7	3.7		3.7	3.7	3.7	3.7	3.7	
All－Red Time（s）	3.5	3.5		3.5	3.5		4.7	4.7	4.7	4.7	4.7	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time（s）	7.2	7.2		7.2	7.2			8.4	8.4	8.4	8.4	
Lead／Lag	Lag	Lag		Lead			Lag	Lag	Lag	Lead		
Lead－Lag Optimize？	Yes	Yes		Yes			Yes	Yes	Yes	Yes		
Vehicle Extension（s）	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Recall Mode	C－Max	C－Max		None	C－Max		None	None	None	None	None	
v／c Ratio	0.25	0.63		0.29	0.61			0.38	0.77	0.69	0.19	
Control Delay	8.3	7.4		13.9	16.8			106.3	78.4	84.0	50.5	
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay	8.3	7.4		13.9	16.8			106.3	78.4	84.0	50.5	
Queue Length 50th（tt）	7	291		21	515			36	61	233	61	
Queue Length 95th（ft）	m20	326		47	729			75	133	299	103	
Internal Link Dist（tt）		337			1331			355			507	
Turn Bay Length（ft）	150			250					115	215		
Base Capacity（vph）	162	2305		221	2554			228	292	459	764	
Starvation Cap Reductn	0	0		0	0			0	0	0	0	
Spillback Cap Reductn	0	0		0	0			0	0	0	0	
Storage Cap Reductn	0	0		0	0			0	0	0	0	
Reduced v／c Ratio	0.25	0.63		0.26	0.61			0.12	0.35	0.42	0.09	

Intersection Summary

Area Type:
Cycle Length: 204
Actuated Cycle Length: 204
Offset: 48 (24\%), Referenced to phase 2:WBTL and 6:EBTL, Start of Yellow
Natural Cycle: 100
Control Type: Actuated-Coordinated
m Volume for 95 th percentile queue is metered by upstream signal.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection Summary
Area Type:
Cycle Length: 204
Actuated Cycle Length: 204
Offset: 0 (0\%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 120
Control Type: Actuated-Coordinated

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection 535
Main Street: EAST BAY DR
Side Street: SEMINOLE BLVD
Jurisdiction: STATE/COUNTY
Section \#: 31 MIST
Comm. Addrs: Y
Pre-empt:

IP: 10.198.120.150 Gateway:10.198.120.1
Gateway:10.198.120.1

				Left Turn Type
Phase \#	Street Name	EB	LT LEAD	
$\mathbf{1}$	EAST BAY DR	WB		
$\mathbf{2}$	EAST BAY DR	SB	LT LAG	Restricted
$\mathbf{3}$	MISSOURI AVE.	NB		
$\mathbf{4}$	SEMINOLE BLVD/MISSOURI	WB	LT LAG	Restricted
$\mathbf{5}$	EAST BAY DR	EB		
$\mathbf{6}$	WEST BAY DR	NB	LT LEAD	Restricted
$\mathbf{7}$	SEMINOLE BLVD.	SB		
$\mathbf{8}$	SEMINOLE BLVD./MISSOURI			

Timing Plan 1 (MM,2,1)

PHASE	1	2	3	4	5	6	7	8
Min. Green	5	10	5	5	5	10	5	5
Walk		7		7		7		7
Ped Clr		36		28		37		27
Veh Ext	1	1	1	1	1	1	1	1
Yellow CIr	4.0	4.0	4.8	4.8	4.0	4.0	4.8	4.8
Red Clr	3.8	3.8	2.6	2.6	3.8	3.8	2.6	2.6
Max 1	35	45	30	50	35	45	30	50
Max 2	25	160	30	40	45	160	25	40
Max 3								
Walk 2								
Ped CIr 2								
Lock Det								
Veh Recall								
Ped Recall								
Max Recall								
CNA 1								
Phase In Use	X	X	X	X	X	X	X	X
Flash	R	Y	R	R	R	Y	R	R
Delay Det.								

Last Timing Change Date: $07 / 07 / 2021$	Database Modified: 07/07/2021
Technician Initials:	Control Room Pers. Initials:

COORD PATTERNS (CYCLE / OFFSET) (MM,3,2)

Cycle	Sec.
$\mathbf{1}$	180
$\mathbf{2}$	160
$\mathbf{3}$	160
$\mathbf{4}$	180
$\mathbf{5}$	200

Offset	Sec. $/ \%$
$\mathbf{1}$	179
2	80
3	70
4	112
5	0

COORD PATTERNS

$\begin{array}{llllllll}\text { Ph } 1 & \text { Ph } 2 & \text { Ph } 3 & \text { Ph } 4 & \text { Ph } 5 & \text { Ph } 6 & \text { Ph } 7 & \text { Ph } 8\end{array}$

$\mathrm{Sec} / \%$									$\mathrm{Sec} / \%$
PATTERN 1	25	84	Sec $/ \%$	Sec $/ \%$	Sec $/ \%$	Sec $/ \%$	$\mathrm{Sec} / \%$	$\mathrm{Sec} / \%$	
PATTERN 2	21	72	21	46	30	79	25	46	
PATTERN 3	21	67	26	46	21	72	21	46	
PATTERN 4	20	89	25	46	26	62	21	51	
PATTERN 5	25	94	30	51	30	64	25	46	

DAY PLANS (MM,5,3)
Action

Event	Plan \#	Time	Action	On/Off	
DAY PLAN1					
	1	5	$\mathbf{0 6 0 0}$		
	2	5	$\mathbf{0 9 3 0}$		
	3	5	$\mathbf{1 4 0 0}$		
	4	3	$\mathbf{1 9 3 0}$		
	5	100	$\mathbf{2 3 0 0}$	FREE	ON
DAY PLAN2					
	1	3	$\mathbf{0 6 3 0}$		
2	4	$\mathbf{0 9 0 0}$			
	3	3	$\mathbf{1 9 0 0}$		
	4	100	$\mathbf{2 3 0 0}$	FREE	ON

Notes: CSX RR 1-800-232-0149. RR ROADMASTER 1-677-3392 RR MAINT. 626-4027
*** SEE SPECIAL PROGRAM SHEETS FOR THE "NO RIGHT TURN" SIGNS OPERATION ***
MAX 2 TIMING DURING COORD
PLAN 1= AM PEAK 180
PLAN 2= OFF PEAK 160
PLAN 3= OFF PEAK 160
PLAN 4= PM PEAK 180
PLAN 5= CLEARING CYCLE 200

Intersection 533
Main Street: WEST BAY DR
Side Street: 4TH ST N
Jurisdiction: COUNTY
Section \#: 31 MIST
Comm. Addrs: IP:10.198.120.160 Gateway:10.198.120.1 Subnet: 255.255.254.0
Pre-empt:
Y

		Direction		Left Turn Type
Phase \#	Street Name			
$\mathbf{1}$		WB		
$\mathbf{2}$	WEST BAY DR			
$\mathbf{3}$		NB		
$\mathbf{4}$	4TH ST. W	WB	LT	Protected/Permitted
$\mathbf{5}$	WEST BAY DR.	EB		
$\mathbf{6}$	WEST BAY DR			
$\mathbf{7}$		SB		
$\mathbf{8}$	4TH ST. W.			

Timing Plan 1 (MM,2,1)

PHASE	1	2	3	4	5	6	7	8
Min. Green		10		5	5	10		5
Walk		7		7		7		7
Ped CIr		12		22		12		22
Veh Ext		1		1	1	1		1
Yellow CIr		3.7		3.7	3.7	3.7		3.7
Red Clr		3.5		4.7	3.5	3.5		4.7
Max 1		30		21	10	30		21
Max 2								
Max 3								
Walk 2								
Ped Clr 2								
Lock Det								
Veh Recall								
Ped Recall								
Max Recall								
CNA 1		x				X		
Phase In Use		X		X	X	X		X
Flash		Y		R		Y		R
Delay Det.								

Last Timing Change Date: $07 / 19 / 2016$	Database Modified: 09/20/2018
Technician Initials:	Control Room Pers. Initials:

COORD PATTERNS (CYCLE / OFFSET) (MM,3,2)

Cycle	Sec.
$\mathbf{1}$	134
$\mathbf{2}$	190
$\mathbf{3}$	204
$\mathbf{4}$	190
$\mathbf{5}$	156

Offset	Sec. $/ \%$
$\mathbf{1}$	75
$\mathbf{2}$	48
$\mathbf{3}$	48
$\mathbf{4}$	61
$\mathbf{5}$	30

COORD PATTERNS

$\begin{array}{llllllll}\text { Ph } 1 & \text { Ph } 2 & \text { Ph } 3 & \text { Ph } 4 & \text { Ph } 5 & \text { Ph } 6 & \text { Ph } 7 & \text { Ph } 8\end{array}$
$\mathrm{Sec} / \% \quad \mathrm{Sec} / \%$

| PATTERN 1 | 89 | | 45 | 15 | 74 | | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PATTERN 2 | 145 | | 45 | 20 | 125 | | 45 |
| PATTERN 3 | 159 | | 45 | 20 | 139 | | 45 |
| PATTERN 4 | 145 | | 45 | 20 | 125 | | 45 |
| PATTERN 5 | 111 | | 45 | 15 | 96 | | 45 |

DAY PLANS (MM,5,3)
Action

Event	Plan \#	Time	Action	On/Off
DAY PLAN1				
1	1	0600		
2	2	0630		
3	3	1800		
4	4	1930		
5	100	2200	FREE	ON
DAY PLAN2				
1	1	0600		
2	5	0700		
3	2	0900		
4	5	1900		
5	100	2200	FREE	ON

Notes: PRE-EMPT 30 SEC. DELAY; 60 SEC DWELL; 4 SEC YELLOW; 2 SEC ALLL-RED
FIRE STATION \#41, PHONE 587-6734
DELAY DETECTOR PH 4 NB RT LANE
PLAN $1=134$ EARLY MORNING
PLAN 2= 190 MORNING PEAK AND OFF PEAK
PLAN 3= 204 PM PEAK
PLAN $4=190$ PM LATE PEAK
PLAN 5= 156 PM OFF PEAK AND WEEKEND MORNINGS

Intersection 531
Main Street: WEST BAY DR
Side Street: CLW-LARGO RD
Jurisdiction: COUNTY
Section \#: 31 MIST
Comm. Addrs: IP:10.198.120.170 Gateway:10.198.120.1
Pre-empt: Y

| | | | Direction | |
| :---: | :--- | :---: | :--- | :--- | Left Turn Type | Phase \# |
| :---: |
| Street Name |

Timing Plan 1 (MM,2,1)

PHASE	1	2	3	4	5	6	7	8
Min. Green	5	10	5	5	5	10	5	5
Walk		10		10		10		10
Ped CIr		30		33		30		33
Veh Ext	1	1	1	1	1	1	1	1
Yellow CIr	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Red Clr	4.5	3.7	5.4	3.7	5.1	3.7	3.9	3.7
Max 1	30	40	30	30	30	40	30	30
Max 2	25	160	25	40	25	160	30	40
Max 3								
Walk 2								
Ped Clr 2								
Lock Det								
Veh Recall								
Ped Recall								
Max Recall								
CNA 1								
Phase In Use	X	X	X	X	X	X	X	X
Flash	R	Y	R	R	R	Y	R	R
Delay Det.								

Last Timing Change Date: $07 / 19 / 2016$	Database Modified: 04/25/2022
Technician Initials:	Control Room Pers. Initials:

COORD PATTERNS (CYCLE / OFFSET) (MM,3,2)

Cycle	Sec.
$\mathbf{1}$	134
$\mathbf{2}$	190
$\mathbf{3}$	204
$\mathbf{4}$	190
$\mathbf{5}$	156
$\mathbf{6}$	134

Offset	Sec. $/ \%$
1	0
2	0
3	0
4	0
5	0
6	0

COORD PATTERNS

$\begin{array}{llllllll}\text { Ph } 1 & \text { Ph } 2 & \text { Ph } 3 & \text { Ph } 4 & \text { Ph } 5 & \text { Ph } 6 & \text { Ph } 7 & \text { Ph } 8\end{array}$

| $\mathrm{Sec} / \%$ | $\mathrm{Sec} / \%$ | $\mathrm{Sec} / \%$ | $\mathrm{Sec} / \%$ | Sec $/ \%$ | Sec $/ \%$ | Sec $/ \%$ | $\mathrm{Sec} / \%$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PATTERN 1 | 20 | 60 | 20 | 34 | 20 | 60 | 20 | 34 |
| PATTERN 2 | 25 | 83 | 25 | 57 | 25 | 83 | 25 | 57 |
| PATTERN 3 | 25 | 97 | 25 | 57 | 25 | 97 | 25 | 57 |
| PATTERN 4 | 25 | 83 | 25 | 57 | 25 | 83 | 25 | 57 |
| PATTERN 5 | 20 | 59 | 20 | 57 | 20 | 59 | 20 | 57 |
| PATTERN 6 | 20 | 60 | 20 | 34 | 20 | 60 | 20 | 34 |

DAY PLANS (MM,5,3)

Action
Event Plan \# Time Action On/Off

DAY PLAN1					
	2	2	$\mathbf{0 6 3 3 0}$		
	3	3	$\mathbf{1 4 0 0}$		
	4	4	$\mathbf{1 8 0 0}$		
	5	5	$\mathbf{1 9 3 0}$		
6	6	$\mathbf{2 2 0 0}$			
	7	100	$\mathbf{2 3 0 0}$	FREE	ON
DAY PLAN2					
	1	1	$\mathbf{0 6 0 0}$		
2	5	$\mathbf{0 7 0 0}$			
3	2	$\mathbf{0 9 0 0}$			
4	5	$\mathbf{1 9 0 0}$			
	5	6	$\mathbf{2 2 0 0}$		
6	100	$\mathbf{2 3 0 0}$	FREE	ON	

Notes: BACK UP TBC FOR ADAPTIVE

NON CNA OPERATION

PLAN 1=AM 134
PLAN 2= AM PEAK 190
PLAN 3= PM PEAK 204
PLAN 4= PM OFF PEAK 190
PLAN 5= PM EVENING 156
PLAN 6= LATE EVENING 134
RUNS VEH EXT 2 DURING COORDINATION

APPENDIX G:

FDOT Access M anagement Guidebook,
FDM Exhib 212-1, and NCHRP Report 745

When Not to Consider Exclusive Right-Turn Lanes

- Dense or built-out corridors with limited space
- Right-turn lane that would negatively impact pedestrians or bicyclists
- Vehicular movements from driveways or median openings that cross the right-turn lane resulting in multiple threat crashes
- Context classifications C2T, C4, C5, or C6

When Exclusive Right-Turn Lanes are Beneficial

There are instances when adding an exclusive right-turn lane for unsignalized driveways are beneficial to traffic operations and safety. Table 27 provides some guidance for this situation based on the speed limit of the roadway and how many right turns occur per hour. Locations where the Auto and Truck Modal Emphasis is "High" may be appropriate for consideration of Exclusive Right Turn Lanes.

Table 27 - Recommended Guidelines for Exclusive Right-Turn Lanes to Unsignalized Driveway ${ }^{10}$

Source: NCHRP Report 420 (Impacts of Access Management Techniques)
These recommendations are primarily based on the research done in NCHRP Report 420, Impacts of Access Management Techniques, Chapter 4 - Unsignalized Access Spacing (Technique 1B), and Use of Speed Differential as a Measure to Evaluate the Need for Right-Turn Deceleration Lane at Unsignalized Intersections.

In the NCHRP Report 420, the observed high-speed roads, 30 to 40 right-turn vehicles per hour caused evasive maneuvers on 5-10 percent of the following through vehicles. For lower speed roadways, 80 to 110 right-turn vehicles caused 15-20 percent of the following through vehicles to make evasive maneuvers. The choice of acceptable percentages of through vehicles impacted is a decision based on reasonable expectations of the different roadways.

In this study, by modeling speed differentials, a better understanding of the impacts of through volume and driveway radius was discovered.

[^1]SヨNV7 NYก」 N $\forall I Q \exists W$
minimum deceleration lengths

of the steps a designer could take to determine whether a leftturn lane is appropriate for a particular location. Where there are no applicable access management guidelines, adequate spacing and design consistency are both essential requirements to consider.

Apply Left-Turn Lane Warrants

Warrants

After compiling all of the relevant information pertaining to a particular intersection, it is necessary to determine whether that information indicates that a left-turn lane is indeed necessary or beneficial. Left-turn lanes can reduce the potential for collisions and improve capacity by removing stopped vehicles from the main travel lane. The recommended left-turn lane warrants developed based on the NCHRP Project 3-91 research (1) are:

- Rural, two-lane highways (see Table 1),
- Rural, four-lane highways (see Table 2), and
- Urban and suburban roadways (see Table 3).

Table 1 also present warrants for a bypass lane treatment on two-lane rural highways. Given a peak-hour left-turn volume and a particular intersection configuration (i.e., number of legs, number of lanes on the major highway), the tables show the minimum peak-hour volume on the major highway that warrants a left-turn lane or bypass lane. Figure 2 displays the warrants for rural two-lane highways graphically. Figure 3 shows graphical warrants for four-lane rural highways, and Figure 4 shows the recommended warrants for urban and suburban arterials.

Technical warrants are an important element of the decision-making process; however, other factors should also be considered when deciding whether to install a left-turn lane, including:

- Sight distance relative to the position of the driver and
- Design consistency within the corridor.

These factors should be considered in conjunction with the numerical warrants. For example, if volumes indicate that a leftturn lane is not warranted but there is insufficient sight distance at the location for the left-turning vehicles, then the left-turn lane should be considered along with other potential changes (e.g., remove sight obstructions, realign the highway, etc.).

Source of Warrants-Benefit-Cost Approach

A benefit-cost approach was conducted as part of NCHRP Project 3-91 (1) to determine when a left-turn lane would be justified. Economic analysis can provide a useful method for combining traffic operations and safety benefits of left-turn lanes to identify situations in which left-turn lanes are and are not justified economically. The development steps included:

- Simulation to determine delay savings from installing a left-turn lane,
- Crash costs,
- Crash reduction savings determined from safety performance functions available in the AASHTO Highway Safety Manual (Chapter 10 discusses rural two-lane, two-way roads; Chapter 11 discusses rural multilane highways; and Chapter 12 discusses urban and suburban arterials) (4),

Table 1. Recommended left-turn treatment warrants for rural two-lane highways.
$\left.\begin{array}{|c|c|c|c|c|}\hline & \begin{array}{c}\text { Three-Leg } \\ \text { Intersection, } \\ \text { Major Two- } \\ \text { Peak-Hour } \\ \text { Volume } \\ \text { (veh/hr) }\end{array} & \begin{array}{c}\text { Thne Highway } \\ \text { Peak-Hour } \\ \text { Volume } \\ \text { Intersection, } \\ \text { Major Two- } \\ \text { (veh/hr/ln) That } \\ \text { Warrants a } \\ \text { Bypass Lane }\end{array} & \begin{array}{c}\text { Lane Highway } \\ \text { Peak-Hour } \\ \text { Volume } \\ \text { (veh/hr/ln) That } \\ \text { Warrants a } \\ \text { Left-Turn Lane }\end{array} & \begin{array}{c}\text { Four-Leg } \\ \text { Major Two- } \\ \text { Lane Highway } \\ \text { Peak-Hour } \\ \text { Volume } \\ (\text { veh/hr/ln) That } \\ \text { Warrants a } \\ \text { Bypass Lane }\end{array}\end{array} \begin{array}{c}\text { Four-Leg } \\ \text { Intersection, } \\ \text { Major Two- } \\ \text { Lane Highway } \\ \text { Peak-Hour } \\ \text { Volume } \\ \text { (veh/hr/ln) That } \\ \text { Warrants a } \\ \text { Left-Turn Lane }\end{array}\right]$

Table 2. Recommended left-turn lane warrants for rural four-lane highways.

Left-Turn Lane Peak-Hour Volume (veh/hr)	Three-Leg Intersection, Major Four-Lane Highway Peak-Hour Volume $(\mathbf{v e h} / \mathbf{h r} / \mathbf{l n})$ That Warrants a Left-Turn Lane	Four-Leg Intersection, Major Four-Lane Highway Peak-Hour Volume (veh/hr/ln) That Warrants a Left-Turn Lane
5	75	50
10	75	25
15	50	25
20	50	25
25	50	<25
30	50	<25
35	50	<25
40	50	<25
45	50	<25
50 or More	50	<25

Table 3. Recommended left-turn lane warrants for urban and suburban arterials.

Left-Turn Lane Peak-Hour Volume (veh/hr)	Three-Leg Intersection, Major Urban and Suburban Arterial Volume (veh/hr/ln) That Warrants a Left-Turn Lane	Four-Leg Intersection, Major Urban and Suburban Arterial Volume (veh/hr/ln) That Warrants a Left-Turn Lane
5	450	50
10	300	50
15	250	50
20	200	50
25	200	50
30	150	50
35	150	50
40	150	50
45	150	<50
50 or More	100	<50

Figure 2. Recommended left-turn treatment warrants for intersections on rural two-lane highways.

Figure 3. Recommended left-turn lane warrants for intersections on rural four-lane highways.

- Crash modification factors available in the AASHTO Highway Safety Manual (4), and
- Construction costs.

For rural conditions, different safety performance functions are provided for two- and four-lane highways and for three- and four-leg intersections. For urban and suburban arterials, prediction equations are provided for three-leg and four-leg intersections. Separate urban and suburban prediction equations are not provided based on the number of lanes on the major road approach. The prediction equations are not a function of speed limit; therefore, the developed warrants also are not a function of speed limit.

A range of values was used in the benefit-cost evaluation to identify volume conditions when the installation of a leftturn lane at unsignalized intersections and major driveways would be cost-effective. Plots and tables were developed that indicate combinations of major road traffic and left-turn lane volume where a left-turn lane would be recommended. Warrants were developed using the following:

- A range of values for the economic value of a statistical life,
- Crash costs based on values in the Highway Safety Manual,
- A range of construction costs, and
- A benefit-cost ratio of 1.0 and 2.0.

The research team suggested a benefit-cost ratio of 1.0 along with the mid-range economic value of a statistical life and moderate construction cost to identify the warrants for a left-turn treatment. For urban and suburban areas, that is a left-turn lane. For rural areas, that is a bypass lane. Benefitcost ratio of 2.0 has been argued as being a more practical value to use to offset the potential variability in other assumptions. The warrants based on a benefit-cost ratio of 2.0 were selected for a left-turn lane on rural highways. These values were similar to the warrants that resulted when the lower crash costs based on older Highway Safety Manual costs were used.

Left-turn lanes can reduce the potential for collisions and improve capacity by removing stopped vehicles from the main travel lane. Left-turn lane warrants were developed as part of NCHRP Project 3-91 using an economic analysis procedure for rural, two-lane highways; rural, four-lane highways; and urban and suburban roadways. The methodology presented in the NCHRP Project 3-91 report (1) could also be used if a transportation agency has available local values for delay

Figure 4. Recommended left-turn lane warrants for intersections on urban and suburban arterials.

Figure 3. Recommended left-turn lane warrants for intersections on rural four-lane highways.

- Crash modification factors available in the AASHTO Highway Safety Manual (4), and
- Construction costs.

For rural conditions, different safety performance functions are provided for two- and four-lane highways and for three- and four-leg intersections. For urban and suburban arterials, prediction equations are provided for three-leg and four-leg intersections. Separate urban and suburban prediction equations are not provided based on the number of lanes on the major road approach. The prediction equations are not a function of speed limit; therefore, the developed warrants also are not a function of speed limit.

A range of values was used in the benefit-cost evaluation to identify volume conditions when the installation of a leftturn lane at unsignalized intersections and major driveways would be cost-effective. Plots and tables were developed that indicate combinations of major road traffic and left-turn lane volume where a left-turn lane would be recommended. Warrants were developed using the following:

- A range of values for the economic value of a statistical life,
- Crash costs based on values in the Highway Safety Manual,
- A range of construction costs, and
- A benefit-cost ratio of 1.0 and 2.0.

The research team suggested a benefit-cost ratio of 1.0 along with the mid-range economic value of a statistical life and moderate construction cost to identify the warrants for a left-turn treatment. For urban and suburban areas, that is a left-turn lane. For rural areas, that is a bypass lane. Benefitcost ratio of 2.0 has been argued as being a more practical value to use to offset the potential variability in other assumptions. The warrants based on a benefit-cost ratio of 2.0 were selected for a left-turn lane on rural highways. These values were similar to the warrants that resulted when the lower crash costs based on older Highway Safety Manual costs were used.

Left-turn lanes can reduce the potential for collisions and improve capacity by removing stopped vehicles from the main travel lane. Left-turn lane warrants were developed as part of NCHRP Project 3-91 using an economic analysis procedure for rural, two-lane highways; rural, four-lane highways; and urban and suburban roadways. The methodology presented in the NCHRP Project 3-91 report (1) could also be used if a transportation agency has available local values for delay

Figure 4. Recommended left-turn lane warrants for intersections on urban and suburban arterials.

[^0]: * PEAK SEASON

[^1]: ${ }^{10}$ May not be appropriate for signalized locations where signal phasing plays an important role in determining the need for right turn lanes.

